Värdering / Referenser
Inom IBGL-projektet fann vi det viktigt att ge en värdering, fingervisning om vilka blågröna system som kan bidra med vilka ekosystemtjänster.
Värderingen nedan är baserad på att systemet anläggs och underhålls givet perfekta förutsättningar och kan leverera ekosystemtjänster givet sin fulla potential. Värderingen och bedömningen är gjord inom projektet IBGL utifrån av en skanning av litteratur på respektive system/ekosystemtjänst.
Värderingen på denna sida ger upphov till resultaten vid filtering i systemguiden.
Denna värdering ska inte ses som absolut sanning, och den kan komma att förändras vid framtida nya bedömningar.
Värderingsskala:
– = Forskning behövs
1 = Låg potential
2 = Ok potential
3 = Bra potential
4 = Bättre potential
5 = Bäst potential
Värdering av taksystem
Ekosystemtjänst / Systemtyp | Sedumtak 50-80mm | Sedum- Ört > 80mm | Biotoptak > 100mm | Odlingstak > 300mm | Parktak > 400mm | Blågrönt tak |
Biologisk mångfald | 3 | 3 | 4 | 4 | 4 | 4 |
Naturliga kretslopp | 3 | 3 | 3 | 4 | 4 | 3 |
Jordmånsbildning | 3 | 3 | 3 | 4 | 4 | 3 |
Mikroklimat | 3 | 3 | 4 | 4 | 4 | 4 |
Kolinlagring | 3 | 3 | 4 | 4 | 4 | 3 |
Extremväder | 3 | 3 | 4 | 4 | 4 | 4 |
Luftrening | 3 | 3 | 4 | 4 | 4 | 3 |
Bullerreducering | 3 | 3 | 4 | 4 | 4 | 3 |
Vattenrening | 3 | 3 | 3 | 3 | 3 | 3 |
Vattenfördröjning | 3 | 3 | 4 | 4 | 4 | 4 |
Vattenreducering | 3 | 3 | 4 | 4 | 5 | 4 |
Pollinering | 3 | 3 | 4 | 4 | 4 | 4 |
Fysisk hälsa | 3 | 3 | 3 | 3 | 3 | 3 |
Mental hälsa | 3 | 4 | 4 | 4 | 4 | 4 |
Kunskap & Inspiration | 4 | 4 | 4 | 4 | 4 | 4 |
Social interaktion | 4 | 4 | 4 | 4 | 4 | 4 |
Matproduktion | 1 | 2 | 2 | 3 | 3 | 2 |
Referenser på taksystem
Referenslista finns längst ner på sidan.
Ekosystemtjänst / Systemtyp | Sedumtak 50-80mm | Sedum- Ört > 80mm | Biotoptak > 100mm | Odlingstak > 300mm | Parktak > 400mm | Blågrönt tak |
Biologisk mångfald | 4, 76 | 4, 76 | 4, 76 | 4, 76 | 4, 76 | 4, 76 |
Naturliga kretslopp | 10 | 10 | 10 | 10 | 10 | 10 |
Jordmånsbildning | 9 | 9 | 9 | 9 | 9 | 9 |
Mikroklimat | 2, 4 | 2, 4 | 2, 4 | 2, 4 | 2, 4 | 2, 4 |
Kolinlagring | 1, 80 | 1, 80 | 1, 80 | 1, 80 | 1, 80 | 1, 80 |
Extremväder | 2, 4 | 2, 4 | 2, 4 | 2, 4 | 2, 4 | 2, 4 |
Luftrening | 2 | 2 | 2 | 2 | 2 | 2 |
Bullerreducering | 6, 7 | 6, 7 | 6, 7 | 6, 7 | 6, 7 | 6, 7 |
Vattenrening | 8 | 8 | 8 | 8 | 8 | 8 |
Vattenfördröjning | 3 | 3, 4 | 3, 4 | 3, 4 | 3, 4 | 3, 4 |
Vattenreducering | 3, 4 | 3, 4 | 3 | 3 | 3 | 3 |
Pollinering | 4, 77 | 4 | 4 | 4 | 4 | 4 |
Fysisk hälsa | 5 | 5 | 5 | 5 | 5 | 5 |
Mental hälsa | 45 | 45 | 45 | 45 | 45 | 45 |
Kunskap & Inspiration | 46 | 46 | 46 | 46 | 46 | 46 |
Social interaktion | 45 | 45 | 45 | 45 | 45 | 45 |
Matproduktion | – | – | – | – | – | – |
Värdering av väggsystem
Ekosystemtjänst / Systemtyp | Levande väggar | Gröna fasader |
Biologisk mångfald | 4 | 3 |
Naturliga kretslopp | 2 | 2 |
Jordmånsbildning | 1 | 1 |
Mikroklimat | 3 | 3 |
Kolinlagring | 3 | 3 |
Extremväder | 3 | 3 |
Luftrening | 4 | 3 |
Bullerreducering | 4 | 3 |
Vattenrening | 3 | 3 |
Vattenfördröjning | 4 | 3 |
Vattenreducering | 4 | 3 |
Pollinering | 4 | 3 |
Fysisk hälsa | 3 | 3 |
Mental hälsa | 4 | 4 |
Kunskap & Inspiration | 4 | 4 |
Social interaktion | 4 | 4 |
Matproduktion | – | – |
Referenser på väggsystem
Referenslista finns längst ner på sidan.
Ekosystemtjänst / Systemtyp | Levande väggar | Gröna fasader |
Biologisk mångfald | 55, 56 | 55, 56 |
Naturliga kretslopp | 55, 56 | 55, 56 |
Jordmånsbildning | 55, 56 | 55, 56 |
Mikroklimat | – | – |
Kolinlagring | 65, 66 | 67, 68 |
Extremväder | – | – |
Luftrening | 14, 15 | – |
Bullerreducering | 13 | – |
Vattenrening | 11, 12 | – |
Vattenfördröjning | – | – |
Vattenreducering | 11, 12 | – |
Pollinering | 55, 56 | 55, 56 |
Fysisk hälsa | 5 | 5 |
Mental hälsa | 5 | 5 |
Kunskap & Inspiration | 5 | 5 |
Social interaktion | 5 | 5 |
Matproduktion | – | – |
Värdering av marksystem
Ekosystemtjänst / Systemtyp | Träd-plantering | Skelett-bädd | Regn-bädd | Svack-dike | Infiltrations-stråk | Över-svämningsyta | Damm | Urbana ängar | Avrinning till grönyta |
Biologisk mångfald | 4 | – | 4 | 3 | 3 | 3 | 4 | 5 | – |
Naturliga kretslopp | 3 | – | 3 | 3 | 3 | 3 | 4 | 5 | – |
Jordmånsbildning | 3 | – | 3 | 3 | 3 | 3 | 1 | 5 | – |
Mikroklimat | 5 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 3 |
Kolinlagring | 5 | 3 | 4 | 3 | 3 | 3 | 3 | 3 | 3 |
Extremväder | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 2 | 4 |
Luftrening | 5 | 1 | 3 | 1 | 1 | 1 | 3 | 2 | 1 |
Bullerreducering | 4 | 1 | 3 | 4 | 3 | 3 | 4 | 3 | 1 |
Vattenrening | 4 | 4 | 5 | 4 | 5 | 3 | 5 | 4 | 3 |
Vattenfördröjning | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 4 | 4 |
Vattenreducering | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 4 | 4 |
Pollinering | 4 | – | 4 | 3 | 3 | 3 | 3 | 5 | – |
Fysisk hälsa | 4 | – | 3 | – | 3 | 4 | 3 | 4 | 4 |
Mental hälsa | 4 | 3 | 4 | – | 3 | 3 | 5 | 4 | 3 |
Kunskap & Inspiration | 4 | 4 | 4 | – | 4 | 3 | 4 | 4 | 3 |
Social interaktion | 4 | 3 | 4 | – | 3 | 4 | 4 | 4 | 4 |
Matproduktion | – | 1 | 1 | 1 | 1 | – | 1 | 1 | 1 |
Referenser för marksystem
Referenslista finns längst ner på sidan.
Ekosystemtjänst / Systemtyp | Träd-plantering | Skelett-bädd | Regn-bädd | Svack-dike | Infiltrations-stråk | Över-svämningsyta | Damm | Urbana ängar | Avrinning till grönyta |
Biologisk mångfald | 39, 40, 78 | – | 48 | 54, 79 | 69 | 74 | 59, 60 | 63, 64 | 72 |
Naturliga kretslopp | 39, 40 | – | 48 | 54 | 69 | – | 59 | 63, 64 | – |
Jordmånsbildning | 39, 40 | – | 48 | 54 | 69 | – | 59 | 64 | – |
Mikroklimat | 16-20, 34 | 58 | 48 | – | – | 74 | 59 | 64 | 72 |
Kolinlagring | 27-31, 41 | – | 53 | 53 | – | 74 | – | 64 | 72 |
Extremväder | 16-20 | 58 | 48 | – | 69 | 74 | 59 | 64 | 72 |
Luftrening | 21-24 | – | – | – | – | – | – | 64 | – |
Bullerreducering | 35 | – | – | – | – | – | 62 | 64 | – |
Vattenrening | 43, 44 | 58 | 48, 51, 52 | 54 | – | 74 | 59 | 64 | 57 |
Vattenfördröjning | 25 | 58 | 48, 51, 52 | 54 | 70 | 74 | 59 | 64 | 57 |
Vattenreducering | 25 | 58 | 48, 51, 52 | 54 | 70 | 74 | 59 | 64 | 57 |
Pollinering | 42 | – | – | – | – | – | – | 64 | – |
Fysisk hälsa | 32 | 61 | 73 | – | – | 75 | 59 | 64 | 72 |
Mental hälsa | 33 | 61 | 73 | – | 69 | 75 | 59 | 64 | 72 |
Kunskap & Inspiration | 33 | 61 | 73 | – | 69 | 75 | 59 | 64 | 72 |
Social interaktion | 36-37 | 61 | 73 | – | 69 | 75 | 59 | 64 | 72 |
Matproduktion | 38 | – | – | – | – | – | – | – | – |
Referenslista
- Getter et al. 2009 Carbon Sequestration Potential of Extensive Green Roofs. doi: 10.1021/es901539x
- Francis and Jensen 2017. Marina Bergen Jensen. Benefits of green roofs: A systematic review of the evidence for three ecosystem services, Urban Forestry & Urban Greening, Volume 28,p 167-176 https://doi.org/10.1016/j.ufug.2017.10.015.
- Nguyen, C.N.; Muttil, N.;Tariq, M.A.U.R.; Ng, A.W.M. Quantifying the Benefits and Ecosystem Services Provided by Green Roofs—A Review. Water 2022, 14, 68. https://doi.org/10.3390/ w14010068
- Oberndofer et al 2007. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services Bioscience, Vol. 57 No. 10 https://doi.org/10.1641/B571005
- Ode Sang, Å., Thorpert, P., Fransson, A-M. (2022) Planning, Designing, and Managing Green Roofs and Green Walls for Public Health: An Ecosystem Services Approach Frontiers in Ecology and Evolution, 10: 804500 https://doi.org/10.3389/fevo.2022.804500
- Yang and Jeon, 2020. Design strategies and elements of building envelope for urban acoustic environment, Building and Environment, Volume 182, 107121.
- Balderrama, A.; Kang, J.; Prieto, A.; Luna-Navarro, A.; Arztmann, D.; Knaack, U. Effects of Façades on Urban Acoustic Environment and Soundscape: A Systematic Review. Sustainability 2022, 14, 9670. https://doi.org/10.3390/su14159670
- Berndtsson JC. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering 36 (2010) 351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014
- Schrader S, Böning M. 2006. Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans, Pedobiologia 50,4, 347-356, https://doi.org/10.1016/j.pedobi.2006.06.003.
- Buffam, I., Mitchell, M. (2015). Nutrient Cycling in Green Roof Ecosystems. In: Sutton, R. (eds) Green Roof Ecosystems. Ecological Studies, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-14983-7_5
- Boano F et al. 2020. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits Sci. Total Environ., 711 (2020), pp. 1-26.
- Prodanovic V. 2019. Designing green walls for greywater treatment: The role of plants and operational factors on nutrient removal, Ecological Engineering, 130, 184-195. https://doi.org/10.1016/j.ecoleng.2019.02.019.
- Van Renterghem T. et al. 2013. The potential of building envelope greening to achieve quietness, Building and Environment, Volume 61, Pages 34-44, https://doi.org/10.1016/j.buildenv.2012.12.001.
- Ottelé M et al. 2010. Quantifying the deposition of particulate matter on climber vegetation on living walls, Ecological Engineering, Volume 36, Issue 2, 154-162. https://doi.org/10.1016/j.ecoleng.2009.02.007.
- Sternberg T. et al. 2010.Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Science of The Total Environment, Volume 409, Issue 1, 162-168. https://doi.org/10.1016/j.scitotenv.2010.09.022.
- Erik Gómez-Baggethun, David N. Barton Classifying and valuing ecosystem services for urban planning Ecol. Econ., 86 (2013), pp. 235-245
- C. Dobbs, A.A. Eleuterio, J.D. Amaya, J. Montoya, D. Kendal. The benefits of urban and peri-urban forestry. Unasylva, 69 (250) (2018), pp. 22-29
- L. Zardo, D. Geneletti, M. Pérez-Soba, M. Van Eupen Estimating the cooling capacity of green infrastructures to support urban planning Ecosyst. Serv., 26 A (2017), pp. 225-235, 10.1016/j.ecoser.2017.06.016
- R. Sun, L. Chen Effects of green space dynamics on urban heat islands: Mitigation and diversification Ecosyst. Serv., 23 (2017), pp. 38-46, 10.1016/j.ecoser.2016.11.011
- P. Bolund, S. Hunhammar. Ecosystem services in urban areasEcol. Econ., 29 (2) (1999), pp. 293-301, 10.1016/S0921-8009(99)00013-0
- Yang, J., McBride, J., Zhou, J. & Sun, Z. (2005). The urban forests in Beijing and its role in air pollution reduction. Urban Forestry and Urban Greening, 3, p. 65-78.
- E.G. McPherson, D. Nowak, G. Heisler, S. Grimmond, C. Souch, R. Grant, R. Rowntre
Quantifying urban forest structure, function, and value: the Chicago urban forest project
Urban Ecosystems, 1 (1997), pp. 49-61, 10.1023/A:1014350822458 - F. Baró, L. Chaparro, E. Gómez-Baggethun, J. Langemeyer, D.J. Nowak, J. Terradas Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain Ambio, 43 (4) (2014), pp. 466-479, 10.1007/s13280-014-0507-x
- F. Baró, E. Gómez-Baggethun, D. Haase Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management Ecosyst. Serv., 24 (2017), pp. 147-159, 10.1016/j.ecoser.2017.02.021
- V. Pappalrado, D. La Rosa, A. Campisano, P. La Greca The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study Ecosyst. Serv., 26 B (2017), pp. 345-354, 10.1016/j.ecoser.2017.04.015
- D.J. Nowak, D.E. Crane Carbon sequestration and storage by urban trees in the USA Environ. Pollut., 116 (3) (2002), pp. 381-389
- Mari Ariluoma, Juudit Ottelin, Ranja Hautamäki, Eeva-Maria Tuhkanen, Miia Mänttäri, Carbon sequestration and storage potential of urban green in residential yards: A case study from Helsinki, Urban Forestry & Urban Greening, Volume 57, 2021, 126939, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2020.126939.
- Leena Lindén, Anu Riikonen, Heikki Setälä, Vesa Yli-Pelkonen, Quantifying carbon stocks in urban parks under cold climate conditions, Urban Forestry & Urban Greening, Volume 49, 2020, 126633, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2020.126633.
- Lind E. 2020. Hur grönt är ett stadsträd? : ett stadsträds klimatavtryck ur ett livscykelperspektiv. Alnarp: SLU, Dept. of Landscape Architecture, Planning and Management
- Råberg m.fl. 2022. Potentiella kolsänkor i Malmö stad. RISE och Miljöförvaltningen, Malmö stad.
- Deak, J, och J. Österberg, 2020, iTree Sverige, för strategiskt arbete med ekosystemtjänster, SLU, https://www.tradforeningen.org/wp-content/uploads/2020/12/Slutrapport-i-Tree-Sverige.pdf
- Burt and Feng. Urban green space, tree canopy and prevention of cardiometabolic diseases: a multilevel longitudinal study of 46 786 Australians. Int J Epidemiol. 2020 Jun 1;49(3):926-933. doi: 10.1093/ije/dyz239.
- Astell-Burt and Feng. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul Health. 2019 Oct 7;10:100497. doi: 10.1016/j.ssmph.2019.100497.
- Rahman, M.A., Moser, A., Rötzer, T. et al. Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst 22, 683–697 (2019). https://doi.org/10.1007/s11252-019-00853-x
- De Carvalho, R.M.; Szlafsztein, C.F. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environ. Pollut. 2019, 245, 844–852
- Nesbitt, L., Hotte, N., Barron, S., Cowan, J., & Sheppard, S. R. J. (2017). The social and economic value of cultural ecosystem services pro‐ vided by urban forests in North America: A review and suggestions for future research. Urban Forestry and Urban Greening, 25, 103–111. https://doi.org/10.1016/j.ufug.2017.05.005
- Turner-Skoff, J. B., & Cavender, N. (2019). The benefits of trees for livable and sustainable communities. Plants, People, Planet, 1, 323–335. https://doi.org/10.1002/ppp3.39
- Clark, K.H., Nicholas, K.A. Introducing urban food forestry: a multifunctional approach to increase food security and provide ecosystem services. Landscape Ecol 28, 1649–1669 (2013). https://doi.org/10.1007/s10980-013-9903-z
- Nielsen, A.B., van den Bosch, M., Maruthaveeran, S., et al., 2013. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems 17: 305-327. https://link.springer.com/article/10.1007/s11252-0130316-1.
- Cornelis, J., Hermy, M., 2004. Biodiversity relationships in urban and suburban parks in Flanders. Landscape and Urban Planning 69(4): 385-401. https://www.sciencedirect.com/science/article/pii/S0169204603002779.
- Erlandsson M m.fl. 2022. Negativa klimatutsläpp genom användning av biogena kolsänkor. IVL Rapport 689
- Somme, L., Moquet, L., Quinet, M. et al. Food in a row: urban trees offer valuable floral resources to pollinating insects. Urban Ecosyst 19, 1149–1161 (2016). https://doi.org/10.1007/s11252-016-0555-z
- Denman EC, May PB, Moore GM. The Potential Role of Urban Forests in Removing Nutrients from Stormwater. J Environ Qual. 2016 Jan;45(1):207-14. doi: 10.2134/jeq2015.01.0047. PMID: 26828176.
- Janke BD, Finlay JC, Hobbie SE. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environ Sci Technol. 2017 Sep 5;51(17):9569-9579. doi: 10.1021/acs.est.7b02225. Epub 2017 Aug 11. PMID: 28756675.
- Mesimäki, M.; Hauru, K.; Kotze, D.J.; Lehvävirta, S. Neo-spaces for urban livability? Urbanites’ versatile mental images of green roofs in the Helsinki metropolitan area, Finland. Land Use Policy 2017, 61, 587–600
- Loder, A. (2014). ’There’s a meadow outside my workplace’: a phenomenological exploration of aesthetics and green roofs in Chicago and Toronto. Landscape Urban Plann. 126, 94–106. doi: 10.1016/j.landurbplan.2014.01.008
- Mesimäki, M., Hauru, K., and Lehvävirta, S. (2019). Do small green roofs have the possibility to offer recreational and experiential benefits in a dense urban area? a case study in Helsinki, Finland. Urban Forestry Urban Green. 40, 114–124. doi: 10.1016/j.ufug.2018.10.005
- Kasprzyk M et al. 2022. Technical solutions and benefits of introducing rain gardens – Gdańsk case study. Science of The Total Environment Volume 835, 20 August 2022, 155487
- Carlson, Björnfors, Persson. 2019. Omprojektering av parkeringsytor En väg mot multifunktionella gröna ytor. https://stud.epsilon.slu.se/14574/11/carlsson_l_et_al_190515.pdf
- Prokop, G., Jobstmann, H. & Schönbauer, A. (2011). Report on best practices for limiting soil sealing and mitigating its effects. European commission – DG environment. (Technical report – 2011 – 050). http://ec.europa.eu/environment/soil/pdf/sealing/Soil%20sealing%20- %20Final%20Report.pdf
- Dunnet, N & Clayden, A. (2007). Rain gardens: sustainable rainwater manangement for the garden and the designed landscape. Timber Press, Inc. Portland
- Ishimatsu, K., Ito, K., Mitani, Y. et al. Use of rain gardens for stormwater management in urban design and planning. Landscape Ecol Eng 13, 205–212 (2017). https://doi.org/10.1007/s11355-016-0309-3
- Emad Kavehei, G.A. Jenkins, M.F. Adame, C. Lemckert, Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure, Renewable and Sustainable Energy Reviews, Volume 94, 2018, Pages 1179-1191, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.07.002.
- Sañudo-Fontaneda, L.A.; Roces-García, J.; Coupe, S.J.; Barrios-Crespo, E.; Rey-Mahía, C.; Álvarez-Rabanal, F.P.; Lashford, C. Descriptive Analysis of the Performance of a Vegetated Swale through Long-Term Hydrological Monitoring: A Case Study from Coventry, UK. Water 2020, 12, 2781. https://doi.org/10.3390/w12102781
- Robert A. Francis, Jamie Lorimer, Urban reconciliation ecology: The potential of living roofs and walls, Journal of Environmental Management, Volume 92, Issue 6, 2011, Pages 1429-1437, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2011.01.012.
- Chiquet, C., Dover, J.W. & Mitchell, P. Birds and the urban environment: the value of green walls. Urban Ecosyst 16, 453–462 (2013). https://doi.org/10.1007/s11252-012-0277-9
- L. Prudencio, S.E. Null Stormwater management and ecosystem services: a review Environ. Res. Lett., 13 (3) (2018), p. 033002, 10.1088/1748-9326/aaa81a
- https://miljobarometern.stockholm.se/vatten/atgarder/skelettjord/
- Krivtsov V, Forbes H, Birkinshaw S, Olive V, Chamberlain D, Buckman J, Yahr R, Arthur S, Christie D, Monteiro Y, Diekonigin C. 2022. Ecosystem services provided by urban ponds and green spaces: a detailed study of a semi-natural site with global importance for research. Blue-Green Syst. 4(1):1–23.
- Hill M. J., Biggs J., Thornhill I., Briers R. A., Gledhill D. G., White J. C., Wood P. J. & Hassall C. 2017 Urban ponds as an aquatic biodiversity resource in modified landscapes. Global Change Biology 23, 986–999.
- Higgins S. L., Thomas F., Goldsmith B., Brooks S. J., Hassall C., Harlow J., Stone D., Völker S. & White P. 2019 Urban freshwaters, biodiversity, and human health and well-being: setting an interdisciplinary research agenda. WIREs Water 6, e1339.
- You, J., Lee, P. J., & Jeon, J. Y. (2010). Evaluating water sounds to improve the soundscape of urban areas affected by traffic noise. Noise Control Engineering Journal, 58(5), 477– 483
- Norton, B.A.; Bending, G.D.; Clark, R.; Corstanje, R.; Dunnett, N.; Evans, K.L.; Grafius, D.R.; Gravestock, E.; Grice, S.M.;
Harris, J.A.; et al. Urban meadows as an alternative to short mown grassland: Effects of composition and height on biodiversity. Ecol. Appl. 2019, 29, e01946 - Paudel S and States SL. 2023 Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows, Urban Forestry & Urban Greening,Volume 84,2023, 127932, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2023.127932.
- Pulselli,R.M., Saladini,F., Neri,E., Bastianoni, S.,2014. A comprehensive lifecycle evaluation of vertical greenery systems based on systemic indicators. WITTrans. Ecol. Envir. 191,1017–1024.
- Pan,L.,Chu, L.M.,2016. Energy saving potential and lifecycle environmental impacts of a vertical greenery system in HongKong: a case study. Build.Environ. 96,293–300.
- Browning, B., Garvin, C., Fox, B., Cook, R., Labruto, L., Kallianpurkar, N., Ryan, C., Watson, S & Knop, T (2012). The economics of biophilia: Why designing with nature in mind makes financial sense. Terrapin. http://www.lmla.com.au/wp-content/uploads/2018/10/The-Economics-of-Biophilia_Terrapin- Bright-Green-2012e.pdf [
- Larcher, F., Battisti, L., Bianco, L., Giordano, R., Montacchini, E., Serra, V. & Tedesco, S. (2018). Sustainability of Living Wall Systems Through An Ecosystem Services Lens. Urban Horticulture . Cham: Springer International Publishing, 31–51. https://doi.org/10.1007/978-3-319-67017-1_2
- https://www.stockholmvattenochavfall.se/globalassets/dagvatten/pdf/infistrak_h.pdf
- Qin, Y. Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 2020, 12, 3579. https://doi.org/10.3390/w12123579
- Jennifer A. P. Drake, Andrea Bradford, Jiri Marsalek; Review of environmental performance of permeable pavement systems: state of the knowledge. Water Quality Research Journal 1 August 2013; 48 (3): 203–222. doi: https://doi.org/10.2166/wqrjc.2013.055
- Individual Natural Water Retention Measures. Infiltration basins. http://nwrm.eu/sites/default/files/nwrm_ressources/u12_-_infiltration_basins.pdf
- Bąk, J.; Barjenbruch, M. Benefits, Inconveniences, and Facilities of the Application of Rain Gardens in Urban Spaces from the Perspective of Climate Change—A Review. Water 2022, 14, 1153. https://doi.org/10.3390/w14071153
- Natarajan, P.; Davis, A. P. (2016a). Ecological Assessment of a Transitioned Stormwater Infiltration Basin. Ecol. Eng., 90, 261-267.
- Med plats för dagvattnet – Ett gestaltningsförslag för Eriksbergsparken och Västertorg i Uppsala. https://stud.epsilon.slu.se/15777/1/thorsell_p_200817.pdf
- Wang, L., Wang, H., Wang, Y. et al. The relationship between green roofs and urban biodiversity: a systematic review. Biodivers Conserv 31, 1771–1796 (2022). https://doi.org/10.1007/s10531-022-02436-3
- Jacobs, J., Beenaerts, N. & Artois, T. Green roofs and pollinators, useful green spots for some wild bee species (Hymenoptera: Anthophila), but not so much for hoverflies (Diptera: Syrphidae). Sci Rep 13, 1449 (2023). https://doi.org/10.1038/s41598-023-28698-7
- Matthew J. Lundquist, Madison R. Weisend, Hope H. Kenmore, Insect biodiversity in urban tree pit habitats, Urban Forestry & Urban Greening, Volume 78, 2022, 127788, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2022.127788.
- Fatemeh Kazemi, Simon Beecham, Joan Gibbs, Streetscape biodiversity and the role of bioretention swales in an Australian urban environment, Landscape and Urban Planning, Volume 101, Issue 2, 2011, Pages 139-148, ISSN 0169-2046, https://doi.org/10.1016/j.landurbplan.2011.02.006.
- Mark E. Mitchell, Tobias Emilsson, Ishi Buffam, Carbon, nitrogen, and phosphorus variation along a green roof chronosequence: Implications for green roof ecosystem development, Ecological Engineering, Volume 164, 2021, 106211, ISSN 0925-8574, https://doi.org/10.1016/j.ecoleng.2021.106211.