Värdering / Referenser

Inom IBGL-projektet fann vi det viktigt att ge en värdering, fingervisning om vilka blågröna system som kan bidra med vilka ekosystemtjänster.

Värderingen nedan är baserad på att systemet anläggs och underhålls givet perfekta förutsättningar och kan leverera ekosystemtjänster givet sin fulla potential. Värderingen och bedömningen är gjord inom projektet IBGL utifrån av en skanning av litteratur på respektive system/ekosystemtjänst.

Värderingen på denna sida ger upphov till resultaten vid filtering i systemguiden.

Denna värdering ska inte ses som absolut sanning, och den kan komma att förändras vid framtida nya bedömningar.

Värderingsskala:

– = Forskning behövs

1 = Låg potential

2 = Ok potential

3 = Bra potential

4 = Bättre potential

5 = Bäst potential

Värdering av taksystem

Ekosystemtjänst / SystemtypSedumtak
50-80mm
Sedum- Ört
> 80mm
Biotoptak
> 100mm
Odlingstak
> 300mm
Parktak
> 400mm
Blågrönt tak
Biologisk mångfald334444
Naturliga kretslopp333443
Jordmånsbildning333443
Mikroklimat334444
Kolinlagring334443
Extremväder334444
Luftrening334443
Bullerreducering334443
Vattenrening333333
Vattenfördröjning334444
Vattenreducering334454
Pollinering334444
Fysisk hälsa333333
Mental hälsa344444
Kunskap & Inspiration444444
Social interaktion444444
Matproduktion122332
*Värderingen är framtagen i projektet IBGL och ämnar ge en fingervisning kring skillnader mellan blågröna systemtyper. Värderingen är ej slutgiltig och kan komma att preciseras vid framtida värderingsrundor.

Referenser på taksystem

Referenslista finns längst ner på sidan.

Ekosystemtjänst / SystemtypSedumtak
50-80mm
Sedum- Ört
> 80mm
Biotoptak
> 100mm
Odlingstak
> 300mm
Parktak
> 400mm
Blågrönt tak
Biologisk mångfald4, 764, 764, 764, 764, 764, 76
Naturliga kretslopp101010101010
Jordmånsbildning999999
Mikroklimat2, 42, 42, 42, 42, 42, 4
Kolinlagring1, 801, 801, 801, 801, 801, 80
Extremväder2, 42, 42, 42, 42, 42, 4
Luftrening222222
Bullerreducering6, 76, 76, 76, 76, 76, 7
Vattenrening888888
Vattenfördröjning33, 43, 43, 43, 43, 4
Vattenreducering3, 43, 43333
Pollinering4, 7744444
Fysisk hälsa555555
Mental hälsa454545454545
Kunskap & Inspiration464646464646
Social interaktion454545454545
Matproduktion
*Värderingen är framtagen i projektet IBGL och ämnar ge en fingervisning kring skillnader mellan blågröna systemtyper. Värderingen är ej slutgiltig och kan komma att preciseras vid framtida värderingsrundor.

Värdering av väggsystem

Ekosystemtjänst / SystemtypLevande väggarGröna fasader
Biologisk mångfald43
Naturliga kretslopp22
Jordmånsbildning11
Mikroklimat33
Kolinlagring33
Extremväder33
Luftrening43
Bullerreducering43
Vattenrening33
Vattenfördröjning43
Vattenreducering43
Pollinering43
Fysisk hälsa33
Mental hälsa44
Kunskap & Inspiration44
Social interaktion44
Matproduktion
*Värderingen är framtagen i projektet IBGL och ämnar ge en fingervisning kring skillnader mellan blågröna systemtyper. Värderingen är ej slutgiltig och kan komma att preciseras vid framtida värderingsrundor.

Referenser på väggsystem

Referenslista finns längst ner på sidan.

Ekosystemtjänst / SystemtypLevande väggarGröna fasader
Biologisk mångfald55, 5655, 56
Naturliga kretslopp55, 5655, 56
Jordmånsbildning55, 5655, 56
Mikroklimat
Kolinlagring65, 6667, 68
Extremväder
Luftrening14, 15
Bullerreducering13
Vattenrening11, 12
Vattenfördröjning
Vattenreducering11, 12
Pollinering55, 5655, 56
Fysisk hälsa55
Mental hälsa55
Kunskap & Inspiration55
Social interaktion55
Matproduktion
*Värderingen är framtagen i projektet IBGL och ämnar ge en fingervisning kring skillnader mellan blågröna systemtyper. Värderingen är ej slutgiltig och kan komma att preciseras vid framtida värderingsrundor.

Värdering av marksystem

Ekosystemtjänst / SystemtypTräd-planteringSkelett-bäddRegn-bädd Svack-dike Infiltrations-stråkÖver-svämningsytaDammUrbana ängarAvrinning
till grönyta
Biologisk mångfald4433345
Naturliga kretslopp3333345
Jordmånsbildning3333315
Mikroklimat533333443
Kolinlagring534333333
Extremväder444445424
Luftrening513111321
Bullerreducering413433431
Vattenrening445453543
Vattenfördröjning445445544
Vattenreducering445445544
Pollinering4433335
Fysisk hälsa4334344
Mental hälsa43433543
Kunskap & Inspiration44443443
Social interaktion43434444
Matproduktion1111111
*Värderingen är framtagen i projektet IBGL och ämnar ge en fingervisning kring skillnader mellan blågröna systemtyper. Värderingen är ej slutgiltig och kan komma att preciseras vid framtida värderingsrundor.

Referenser för marksystem

Referenslista finns längst ner på sidan.

Ekosystemtjänst / SystemtypTräd-planteringSkelett-bäddRegn-bädd Svack-dike Infiltrations-stråkÖver-svämningsytaDammUrbana ängarAvrinning
till grönyta
Biologisk mångfald39, 40, 784854, 79697459, 6063, 6472
Naturliga kretslopp39, 404854695963, 64
Jordmånsbildning39, 404854695964
Mikroklimat16-20, 34584874596472
Kolinlagring27-31, 415353746472
Extremväder16-2058486974596472
Luftrening21-2464
Bullerreducering356264
Vattenrening43, 445848, 51, 525474596457
Vattenfördröjning255848, 51, 52547074596457
Vattenreducering255848, 51, 52547074596457
Pollinering4264
Fysisk hälsa32617375596472
Mental hälsa3361736975596472
Kunskap & Inspiration3361736975596472
Social interaktion36-3761736975596472
Matproduktion38
*Värderingen är framtagen i projektet IBGL och ämnar ge en fingervisning kring skillnader mellan blågröna systemtyper. Värderingen är ej slutgiltig och kan komma att preciseras vid framtida värderingsrundor.

Referenslista

  1. Getter et al. 2009 Carbon Sequestration Potential of Extensive Green Roofs. doi: 10.1021/es901539x
  2. Francis and Jensen 2017.  Marina Bergen Jensen. Benefits of green roofs: A systematic review of the evidence for three ecosystem services, Urban Forestry & Urban Greening, Volume 28,p 167-176 https://doi.org/10.1016/j.ufug.2017.10.015.
  3. Nguyen, C.N.; Muttil, N.;Tariq, M.A.U.R.; Ng, A.W.M. Quantifying the Benefits and Ecosystem Services Provided by Green Roofs—A Review. Water 2022, 14, 68. https://doi.org/10.3390/ w14010068 
  4. Oberndofer et al 2007. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services Bioscience, Vol. 57 No. 10 https://doi.org/10.1641/B571005
  5. Ode Sang, Å., Thorpert, P., Fransson, A-M. (2022) Planning, Designing, and Managing Green Roofs and Green Walls for Public Health: An Ecosystem Services Approach Frontiers in Ecology and Evolution, 10: 804500 https://doi.org/10.3389/fevo.2022.804500
  6. Yang and Jeon, 2020. Design strategies and elements of building envelope for urban acoustic environment, Building and Environment, Volume 182, 107121. 
  7. Balderrama, A.; Kang, J.; Prieto, A.; Luna-Navarro, A.; Arztmann, D.; Knaack, U. Effects of Façades on Urban Acoustic Environment and Soundscape: A Systematic Review. Sustainability 2022, 14, 9670. https://doi.org/10.3390/su14159670
  8. Berndtsson JC. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering 36 (2010) 351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014
  9. Schrader S, Böning M. 2006. Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans, Pedobiologia 50,4, 347-356, https://doi.org/10.1016/j.pedobi.2006.06.003.
  10. Buffam, I., Mitchell, M. (2015). Nutrient Cycling in Green Roof Ecosystems. In: Sutton, R. (eds) Green Roof Ecosystems. Ecological Studies, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-14983-7_5
  11. Boano F et al. 2020. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits Sci. Total Environ., 711 (2020), pp. 1-26.
  12. Prodanovic V. 2019. Designing green walls for greywater treatment: The role of plants and operational factors on nutrient removal, Ecological Engineering, 130, 184-195. https://doi.org/10.1016/j.ecoleng.2019.02.019.
  13. Van Renterghem T. et al. 2013. The potential of building envelope greening to achieve quietness, Building and Environment, Volume 61, Pages 34-44, https://doi.org/10.1016/j.buildenv.2012.12.001.
  14. Ottelé M et al. 2010. Quantifying the deposition of particulate matter on climber vegetation on living walls, Ecological Engineering, Volume 36, Issue 2, 154-162. https://doi.org/10.1016/j.ecoleng.2009.02.007.
  15. Sternberg T. et al. 2010.Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Science of The Total Environment, Volume 409, Issue 1, 162-168. https://doi.org/10.1016/j.scitotenv.2010.09.022.
  16. Erik Gómez-Baggethun, David N. Barton Classifying and valuing ecosystem services for urban planning Ecol. Econ., 86 (2013), pp. 235-245
  17. C. Dobbs, A.A. Eleuterio, J.D. Amaya, J. Montoya, D. Kendal. The benefits of urban and peri-urban forestry. Unasylva, 69 (250) (2018), pp. 22-29
  18. L. Zardo, D. Geneletti, M. Pérez-Soba, M. Van Eupen Estimating the cooling capacity of green infrastructures to support urban planning Ecosyst. Serv., 26 A (2017), pp. 225-235, 10.1016/j.ecoser.2017.06.016
  19. R. Sun, L. Chen Effects of green space dynamics on urban heat islands: Mitigation and diversification Ecosyst. Serv., 23 (2017), pp. 38-46, 10.1016/j.ecoser.2016.11.011
  20. P. Bolund, S. Hunhammar. Ecosystem services in urban areasEcol. Econ., 29 (2) (1999), pp. 293-301, 10.1016/S0921-8009(99)00013-0
  21. Yang, J., McBride, J., Zhou, J. & Sun, Z. (2005). The urban forests in Beijing and its role in air pollution reduction. Urban Forestry and Urban Greening, 3, p. 65-78.
  22. E.G. McPherson, D. Nowak, G. Heisler, S. Grimmond, C. Souch, R. Grant, R. Rowntre
    Quantifying urban forest structure, function, and value: the Chicago urban forest project
    Urban Ecosystems, 1 (1997), pp. 49-61, 10.1023/A:1014350822458
  23. F. Baró, L. Chaparro, E. Gómez-Baggethun, J. Langemeyer, D.J. Nowak, J. Terradas Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain Ambio, 43 (4) (2014), pp. 466-479, 10.1007/s13280-014-0507-x
  24. F. Baró, E. Gómez-Baggethun, D. Haase Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management Ecosyst. Serv., 24 (2017), pp. 147-159, 10.1016/j.ecoser.2017.02.021
  25. V. Pappalrado, D. La Rosa, A. Campisano, P. La Greca The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study Ecosyst. Serv., 26 B (2017), pp. 345-354, 10.1016/j.ecoser.2017.04.015
  26. D.J. Nowak, D.E. Crane Carbon sequestration and storage by urban trees in the USA Environ. Pollut., 116 (3) (2002), pp. 381-389
  27. Mari Ariluoma, Juudit Ottelin, Ranja Hautamäki, Eeva-Maria Tuhkanen, Miia Mänttäri, Carbon sequestration and storage potential of urban green in residential yards: A case study from Helsinki, Urban Forestry & Urban Greening, Volume 57, 2021, 126939, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2020.126939.
  28. Leena Lindén, Anu Riikonen, Heikki Setälä, Vesa Yli-Pelkonen, Quantifying carbon stocks in urban parks under cold climate conditions, Urban Forestry & Urban Greening, Volume 49, 2020, 126633, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2020.126633.
  29. Lind E. 2020. Hur grönt är ett stadsträd? : ett stadsträds klimatavtryck ur ett livscykelperspektiv. Alnarp: SLU, Dept. of Landscape Architecture, Planning and Management
  30. Råberg m.fl. 2022. Potentiella kolsänkor i Malmö stad. RISE och Miljöförvaltningen, Malmö stad.
  31. Deak, J, och J. Österberg, 2020, iTree Sverige, för strategiskt arbete med ekosystemtjänster, SLU, https://www.tradforeningen.org/wp-content/uploads/2020/12/Slutrapport-i-Tree-Sverige.pdf
  32. Burt and Feng. Urban green space, tree canopy and prevention of cardiometabolic diseases: a multilevel longitudinal study of 46 786 Australians. Int J Epidemiol. 2020 Jun 1;49(3):926-933. doi: 10.1093/ije/dyz239.
  33. Astell-Burt and Feng. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul Health. 2019 Oct 7;10:100497. doi: 10.1016/j.ssmph.2019.100497. 
  34. Rahman, M.A., Moser, A., Rötzer, T. et al. Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst 22, 683–697 (2019). https://doi.org/10.1007/s11252-019-00853-x
  35. De Carvalho, R.M.; Szlafsztein, C.F. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environ. Pollut. 2019, 245, 844–852
  36. Nesbitt, L., Hotte, N., Barron, S., Cowan, J., & Sheppard, S. R. J. (2017). The social and economic value of cultural ecosystem services pro‐ vided by urban forests in North America: A review and suggestions for future research. Urban Forestry and Urban Greening, 25, 103–111. https://doi.org/10.1016/j.ufug.2017.05.005
  37. Turner-Skoff, J. B., & Cavender, N. (2019). The benefits of trees for livable and sustainable communities. Plants, People, Planet, 1, 323–335. https://doi.org/10.1002/ppp3.39
  38. Clark, K.H., Nicholas, K.A. Introducing urban food forestry: a multifunctional approach to increase food security and provide ecosystem services. Landscape Ecol 28, 1649–1669 (2013). https://doi.org/10.1007/s10980-013-9903-z
  39. Nielsen, A.B., van den Bosch, M., Maruthaveeran, S., et al., 2013. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems 17: 305-327. https://link.springer.com/article/10.1007/s11252-0130316-1. 
  40. Cornelis, J., Hermy, M., 2004. Biodiversity relationships in urban and suburban parks in Flanders. Landscape and Urban Planning 69(4): 385-401. https://www.sciencedirect.com/science/article/pii/S0169204603002779.
  41. Erlandsson M m.fl. 2022. Negativa klimatutsläpp genom användning av biogena kolsänkor. IVL Rapport 689
  42. Somme, L., Moquet, L., Quinet, M. et al. Food in a row: urban trees offer valuable floral resources to pollinating insects. Urban Ecosyst 19, 1149–1161 (2016). https://doi.org/10.1007/s11252-016-0555-z
  43. Denman EC, May PB, Moore GM. The Potential Role of Urban Forests in Removing Nutrients from Stormwater. J Environ Qual. 2016 Jan;45(1):207-14. doi: 10.2134/jeq2015.01.0047. PMID: 26828176.
  44. Janke BD, Finlay JC, Hobbie SE. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environ Sci Technol. 2017 Sep 5;51(17):9569-9579. doi: 10.1021/acs.est.7b02225. Epub 2017 Aug 11. PMID: 28756675.
  45. Mesimäki, M.; Hauru, K.; Kotze, D.J.; Lehvävirta, S. Neo-spaces for urban livability? Urbanites’ versatile mental images of green roofs in the Helsinki metropolitan area, Finland. Land Use Policy 2017, 61, 587–600
  46. Loder, A. (2014). ’There’s a meadow outside my workplace’: a phenomenological exploration of aesthetics and green roofs in Chicago and Toronto. Landscape Urban Plann. 126, 94–106. doi: 10.1016/j.landurbplan.2014.01.008
  47. Mesimäki, M., Hauru, K., and Lehvävirta, S. (2019). Do small green roofs have the possibility to offer recreational and experiential benefits in a dense urban area? a case study in Helsinki, Finland. Urban Forestry Urban Green. 40, 114–124. doi: 10.1016/j.ufug.2018.10.005
  48. Kasprzyk M et al. 2022. Technical solutions and benefits of introducing rain gardens – Gdańsk case study. Science of The Total Environment Volume 835, 20 August 2022, 155487
  49. Carlson, Björnfors, Persson. 2019. Omprojektering av parkeringsytor En väg mot multifunktionella gröna ytor. https://stud.epsilon.slu.se/14574/11/carlsson_l_et_al_190515.pdf
  50. Prokop, G., Jobstmann, H. & Schönbauer, A. (2011). Report on best practices for limiting soil sealing and mitigating its effects. European commission – DG environment. (Technical report – 2011 – 050). http://ec.europa.eu/environment/soil/pdf/sealing/Soil%20sealing%20- %20Final%20Report.pdf 
  51. Dunnet, N & Clayden, A. (2007). Rain gardens: sustainable rainwater manangement for the garden and the designed landscape. Timber Press, Inc. Portland 
  52. Ishimatsu, K., Ito, K., Mitani, Y. et al. Use of rain gardens for stormwater management in urban design and planning. Landscape Ecol Eng 13, 205–212 (2017). https://doi.org/10.1007/s11355-016-0309-3
  53. Emad Kavehei, G.A. Jenkins, M.F. Adame, C. Lemckert, Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure, Renewable and Sustainable Energy Reviews, Volume 94, 2018, Pages 1179-1191, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.07.002.
  54. Sañudo-Fontaneda, L.A.; Roces-García, J.; Coupe, S.J.; Barrios-Crespo, E.; Rey-Mahía, C.; Álvarez-Rabanal, F.P.; Lashford, C. Descriptive Analysis of the Performance of a Vegetated Swale through Long-Term Hydrological Monitoring: A Case Study from Coventry, UK. Water 2020, 12, 2781. https://doi.org/10.3390/w12102781
  55. Robert A. Francis, Jamie Lorimer, Urban reconciliation ecology: The potential of living roofs and walls, Journal of Environmental Management, Volume 92, Issue 6, 2011, Pages 1429-1437, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2011.01.012.
  56. Chiquet, C., Dover, J.W. & Mitchell, P. Birds and the urban environment: the value of green walls. Urban Ecosyst 16, 453–462 (2013). https://doi.org/10.1007/s11252-012-0277-9
  57. L. Prudencio, S.E. Null Stormwater management and ecosystem services: a review Environ. Res. Lett., 13 (3) (2018), p. 033002, 10.1088/1748-9326/aaa81a
  58. https://miljobarometern.stockholm.se/vatten/atgarder/skelettjord/
  59. Krivtsov V, Forbes H, Birkinshaw S, Olive V, Chamberlain D, Buckman J, Yahr R, Arthur S, Christie D, Monteiro Y, Diekonigin C. 2022. Ecosystem services provided by urban ponds and green spaces: a detailed study of a semi-natural site with global importance for research. Blue-Green Syst. 4(1):1–23.
  60. Hill M. J., Biggs J., Thornhill I., Briers R. A., Gledhill D. G., White J. C., Wood P. J. & Hassall C. 2017 Urban ponds as an aquatic biodiversity resource in modified landscapes. Global Change Biology 23, 986–999.
  61. Higgins S. L., Thomas F., Goldsmith B., Brooks S. J., Hassall C., Harlow J., Stone D., Völker S. & White P. 2019 Urban freshwaters, biodiversity, and human health and well-being: setting an interdisciplinary research agenda. WIREs Water 6, e1339.
  62. You, J., Lee, P. J., & Jeon, J. Y. (2010). Evaluating water sounds to improve the soundscape of urban areas affected by traffic noise. Noise Control Engineering Journal, 58(5), 477– 483
  63. Norton, B.A.; Bending, G.D.; Clark, R.; Corstanje, R.; Dunnett, N.; Evans, K.L.; Grafius, D.R.; Gravestock, E.; Grice, S.M.;
    Harris, J.A.; et al.
    Urban meadows as an alternative to short mown grassland: Effects of composition and height on biodiversity. Ecol. Appl. 2019, 29, e01946
  64. Paudel S and States SL. 2023 Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows, Urban Forestry & Urban Greening,Volume 84,2023, 127932, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2023.127932.
  65. Pulselli,R.M., Saladini,F., Neri,E., Bastianoni, S.,2014. A comprehensive lifecycle evaluation of vertical greenery systems based on systemic indicators. WITTrans. Ecol. Envir. 191,1017–1024.
  66. Pan,L.,Chu, L.M.,2016. Energy saving potential and lifecycle environmental impacts of a vertical greenery system in HongKong: a case study. Build.Environ. 96,293–300.
  67. Browning, B., Garvin, C., Fox, B., Cook, R., Labruto, L., Kallianpurkar, N., Ryan, C., Watson, S &  Knop, T (2012).  The economics of biophilia: Why designing  with nature in mind makes  financial sense.  Terrapin.  http://www.lmla.com.au/wp-content/uploads/2018/10/The-Economics-of-Biophilia_Terrapin-  Bright-Green-2012e.pdf  [
  68. Larcher, F., Battisti, L., Bianco, L., Giordano, R., Montacchini, E., Serra, V. & Tedesco, S. (2018).  Sustainability of Living Wall Systems Through An Ecosystem Services Lens.  Urban  Horticulture  . Cham: Springer International Publishing,  31–51.  https://doi.org/10.1007/978-3-319-67017-1_2 
  69. https://www.stockholmvattenochavfall.se/globalassets/dagvatten/pdf/infistrak_h.pdf
  70. Qin, Y. Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 2020, 12, 3579. https://doi.org/10.3390/w12123579
  71. Jennifer A. P. Drake, Andrea Bradford, Jiri Marsalek; Review of environmental performance of permeable pavement systems: state of the knowledge. Water Quality Research Journal 1 August 2013; 48 (3): 203–222. doi: https://doi.org/10.2166/wqrjc.2013.055
  72. Individual Natural Water Retention Measures. Infiltration basins. http://nwrm.eu/sites/default/files/nwrm_ressources/u12_-_infiltration_basins.pdf
  73. Bąk, J.; Barjenbruch, M. Benefits, Inconveniences, and Facilities of the Application of Rain Gardens in Urban Spaces from the Perspective of Climate Change—A Review. Water 2022, 14, 1153. https://doi.org/10.3390/w14071153
  74. Natarajan, P.; Davis, A. P. (2016a). Ecological Assessment of a Transitioned Stormwater Infiltration Basin. Ecol. Eng., 90, 261-267.  
  75. Med plats för dagvattnet – Ett gestaltningsförslag för Eriksbergsparken och Västertorg i Uppsala. https://stud.epsilon.slu.se/15777/1/thorsell_p_200817.pdf
  76. Wang, L., Wang, H., Wang, Y. et al. The relationship between green roofs and urban biodiversity: a systematic review. Biodivers Conserv 31, 1771–1796 (2022). https://doi.org/10.1007/s10531-022-02436-3
  77. Jacobs, J., Beenaerts, N. & Artois, T. Green roofs and pollinators, useful green spots for some wild bee species (Hymenoptera: Anthophila), but not so much for hoverflies (Diptera: Syrphidae). Sci Rep 13, 1449 (2023). https://doi.org/10.1038/s41598-023-28698-7
  78. Matthew J. Lundquist, Madison R. Weisend, Hope H. Kenmore, Insect biodiversity in urban tree pit habitats, Urban Forestry & Urban Greening, Volume 78, 2022, 127788, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2022.127788.
  79. Fatemeh Kazemi, Simon Beecham, Joan Gibbs, Streetscape biodiversity and the role of bioretention swales in an Australian urban environment, Landscape and Urban Planning, Volume 101, Issue 2, 2011, Pages 139-148, ISSN 0169-2046, https://doi.org/10.1016/j.landurbplan.2011.02.006.
  80. Mark E. Mitchell, Tobias Emilsson, Ishi Buffam, Carbon, nitrogen, and phosphorus variation along a green roof chronosequence: Implications for green roof ecosystem development, Ecological Engineering, Volume 164, 2021, 106211, ISSN 0925-8574, https://doi.org/10.1016/j.ecoleng.2021.106211.